Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry.

نویسندگان

  • Adam Wax
  • John W Pyhtila
  • Robert N Graf
  • Ronald Nines
  • Charles W Boone
  • Ramachandra R Dasari
  • Michael S Feld
  • Vernon E Steele
  • Gary D Stoner
چکیده

Angle-resolved low-coherence interferometry (a/LCI) is used to obtain quantitative, depth-resolved nuclear morphology measurements. We compare the average diameter and texture of cell nuclei in rat esophagus epithelial tissue to grading criteria established in a previous a/LCI study to prospectively grade neoplastic progression. We exploit the depth resolution of a/LCI to exclusively examine the basal layer of the epithelium, approximately 50 to 100 microm beneath the tissue surface, without the need for exogenous contrast agents, tissue sectioning, or fixation. The results of two studies are presented that compare the performance of two a/LCI modalities. Overall, the combined studies show 91% sensitivity and 97% specificity for detecting dysplasia, using histopathology as the standard. In addition, the studies enable the effects of dietary chemopreventive agents, difluoromethylornithine (DFMO) and curcumin, to be assessed by observing modulation in the incidence of neoplastic change. We demonstrate that a/LCI is highly effective for monitoring neoplastic change and can be applied to assessing the efficacy of chemopreventive agents in the rat esophagus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry.

We present a quantitative study of the nuclear morphometry of epithelial cells in an animal model of esophageal carcinogenesis. Changes in the size and texture of cell nuclei as a result of neoplastic transformation and chemopreventive action are observed in situ using a new optical technique, angle-resolved low-coherence interferometry (a/LCI). The capabilities of a/LCI are demonstrated via qu...

متن کامل

In situ assessment of intraepithelial neoplasia in hamster trachea epithelium using angle-resolved low-coherence interferometry.

Optical spectroscopy was used to evaluate the transformation of nuclear morphology associated with intraepithelial neoplasia in an animal model of carcinogenesis. In this pilot study, we have assessed the capability of angle-resolved low-coherence interferometry (a/LCI) to monitor in situ the neoplastic progression of hamster trachea epithelial tissue. By using the depth resolution made possibl...

متن کامل

Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology.

We present a novel Fourier-domain angle-resolved low-coherence interferometry (a /LCI) fiber probe designed for in vivo clinical application in gastrointestinal endoscopy. The a/LCI technique measures the depth-resolved angular scattering distribution to determine the size distribution and optical density of cell nuclei for assessing the health of epithelial tissues. Clinical application is ena...

متن کامل

Detection of intestinal dysplasia using angle-resolved low coherence interferometry.

Angle-resolved low coherence interferometry (a/LCI) is an optical biopsy technique that allows for depth-resolved, label-free measurement of the average size and optical density of cell nuclei in epithelial tissue to assess the tissue health. a/LCI has previously been used clinically to identify the presence of dysplasia in Barrett's Esophagus patients undergoing routine surveillance. We presen...

متن کامل

Experimental calibration of a new angle-resolved low coherence interferometry system

We describe results of calibration experiments using a new angle-resolved low coherence interferometry system. Light scattered from a polystyrene microsphere sample are compared with Mie Theory predictions to determine the size of the particles. © 2003 Optical Society of America OCIS codes: Low coherence interferometry, light scattering spectroscopy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 10 5  شماره 

صفحات  -

تاریخ انتشار 2005